![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mpt2xopoveq | Unicode version |
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
Ref | Expression |
---|---|
mpt2xopoveq.f |
Ref | Expression |
---|---|
mpt2xopoveq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2xopoveq.f | . . 3 | |
2 | 1 | a1i 11 | . 2 |
3 | fveq2 5871 | . . . . 5 | |
4 | op1stg 6812 | . . . . . 6 | |
5 | 4 | adantr 465 | . . . . 5 |
6 | 3, 5 | sylan9eqr 2520 | . . . 4 |
7 | 6 | adantrr 716 | . . 3 |
8 | sbceq1a 3338 | . . . . . 6 | |
9 | 8 | adantl 466 | . . . . 5 |
10 | 9 | adantl 466 | . . . 4 |
11 | sbceq1a 3338 | . . . . . 6 | |
12 | 11 | adantr 465 | . . . . 5 |
13 | 12 | adantl 466 | . . . 4 |
14 | 10, 13 | bitrd 253 | . . 3 |
15 | 7, 14 | rabeqbidv 3104 | . 2 |
16 | opex 4716 | . . 3 | |
17 | 16 | a1i 11 | . 2 |
18 | simpr 461 | . 2 | |
19 | rabexg 4602 | . . 3 | |
20 | 19 | ad2antrr 725 | . 2 |
21 | equid 1791 | . . 3 | |
22 | nfvd 1708 | . . 3 | |
23 | 21, 22 | ax-mp 5 | . 2 |
24 | nfvd 1708 | . . 3 | |
25 | 21, 24 | ax-mp 5 | . 2 |
26 | nfcv 2619 | . 2 | |
27 | nfcv 2619 | . 2 | |
28 | nfsbc1v 3347 | . . 3 | |
29 | nfcv 2619 | . . 3 | |
30 | 28, 29 | nfrab 3039 | . 2 |
31 | nfsbc1v 3347 | . . . 4 | |
32 | 26, 31 | nfsbc 3349 | . . 3 |
33 | nfcv 2619 | . . 3 | |
34 | 32, 33 | nfrab 3039 | . 2 |
35 | 2, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34 | ovmpt2dxf 6428 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 F/ wnf 1616
e. wcel 1818 { crab 2811 cvv 3109
[. wsbc 3327 <. cop 4035 ` cfv 5593
(class class class)co 6296 e. cmpt2 6298 c1st 6798 |
This theorem is referenced by: mpt2xopovel 6967 mpt2xopoveqd 6968 nbgraopALT 24424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 |
Copyright terms: Public domain | W3C validator |