Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2xopynvov0g Unicode version

Theorem mpt2xopynvov0g 6961
 Description: If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpt2xopn0yelv.f
Assertion
Ref Expression
mpt2xopynvov0g
Distinct variable groups:   ,   ,   ,   ,

Proof of Theorem mpt2xopynvov0g
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 neq0 3795 . . . 4
2 mpt2xopn0yelv.f . . . . . . 7
32mpt2xopn0yelv 6960 . . . . . 6
4 nnel 2802 . . . . . 6
53, 4syl6ibr 227 . . . . 5
65exlimdv 1724 . . . 4
71, 6syl5bi 217 . . 3
87con4d 105 . 2
98imp 429 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  ->wi 4  /\wa 369  =wceq 1395  E.wex 1612  e.wcel 1818  e/wnel 2653   cvv 3109   c0 3784  <.cop 4035  cfv 5593  (class class class)co 6296  e.`cmpt2 6298   c1st 6798 This theorem is referenced by:  mpt2xopynvov0  6965 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fv 5601  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6800  df-2nd 6801
 Copyright terms: Public domain W3C validator