![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mptelixpg | Unicode version |
Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.) |
Ref | Expression |
---|---|
mptelixpg |
I
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | nfcv 2619 | . . . . . 6 | |
3 | nfcsb1v 3450 | . . . . . 6 | |
4 | csbeq1a 3443 | . . . . . 6 | |
5 | 2, 3, 4 | cbvixp 7506 | . . . . 5 |
6 | 5 | eleq2i 2535 | . . . 4 |
7 | elixp2 7493 | . . . 4 | |
8 | 3anass 977 | . . . 4 | |
9 | 6, 7, 8 | 3bitri 271 | . . 3 |
10 | eqid 2457 | . . . . . . . 8 | |
11 | 10 | fnmpt 5712 | . . . . . . 7 |
12 | 10 | fvmpt2 5963 | . . . . . . . . 9 |
13 | simpr 461 | . . . . . . . . 9 | |
14 | 12, 13 | eqeltrd 2545 | . . . . . . . 8 |
15 | 14 | ralimiaa 2849 | . . . . . . 7 |
16 | 11, 15 | jca 532 | . . . . . 6 |
17 | dffn2 5737 | . . . . . . . 8 | |
18 | 10 | fmpt 6052 | . . . . . . . . 9 |
19 | 10 | fvmpt2 5963 | . . . . . . . . . . . . 13 |
20 | 19 | eleq1d 2526 | . . . . . . . . . . . 12 |
21 | 20 | biimpd 207 | . . . . . . . . . . 11 |
22 | 21 | ralimiaa 2849 | . . . . . . . . . 10 |
23 | ralim 2846 | . . . . . . . . . 10 | |
24 | 22, 23 | syl 16 | . . . . . . . . 9 |
25 | 18, 24 | sylbir 213 | . . . . . . . 8 |
26 | 17, 25 | sylbi 195 | . . . . . . 7 |
27 | 26 | imp 429 | . . . . . 6 |
28 | 16, 27 | impbii 188 | . . . . 5 |
29 | nfv 1707 | . . . . . . 7 | |
30 | nffvmpt1 5879 | . . . . . . . 8 | |
31 | 30, 3 | nfel 2632 | . . . . . . 7 |
32 | fveq2 5871 | . . . . . . . 8 | |
33 | 32, 4 | eleq12d 2539 | . . . . . . 7 |
34 | 29, 31, 33 | cbvral 3080 | . . . . . 6 |
35 | 34 | anbi2i 694 | . . . . 5 |
36 | 28, 35 | bitri 249 | . . . 4 |
37 | mptexg 6142 | . . . . 5 | |
38 | 37 | biantrurd 508 | . . . 4 |
39 | 36, 38 | syl5rbb 258 | . . 3 |
40 | 9, 39 | syl5bb 257 | . 2 |
41 | 1, 40 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 e. wcel 1818
A. wral 2807 cvv 3109
[_ csb 3434 e. cmpt 4510 Fn wfn 5588
--> wf 5589 ` cfv 5593 X_ cixp 7489 |
This theorem is referenced by: resixpfo 7527 ixpiunwdom 8038 dfac9 8537 prdsbasmpt 14867 prdsbasmpt2 14879 idfucl 15250 fuccocl 15333 fucidcl 15334 invfuc 15343 curf2cl 15500 yonedalem4c 15546 dprdwd 17044 ptpjopn 20113 dfac14lem 20118 ptcnplem 20122 ptcnp 20123 ptcn 20128 ptcmplem2 20553 tmdgsum2 20595 upixp 30220 kelac1 31009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ixp 7490 |
Copyright terms: Public domain | W3C validator |