![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mpteq12i | Unicode version |
Description: An equality inference for the maps to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq12i.1 | |
mpteq12i.2 |
Ref | Expression |
---|---|
mpteq12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12i.1 | . . . 4 | |
2 | 1 | a1i 11 | . . 3 |
3 | mpteq12i.2 | . . . 4 | |
4 | 3 | a1i 11 | . . 3 |
5 | 2, 4 | mpteq12dv 4530 | . 2 |
6 | 5 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 wtru 1396 e. cmpt 4510 |
This theorem is referenced by: offres 6795 pmtrprfval 16512 dprdvalOLD 17036 evlsval 18188 madufval 19139 limcdif 22280 dfhnorm2 26039 cdj3lem3 27357 cdj3lem3b 27359 partfun 27516 esumsn 28072 measinb2 28194 eulerpart 28321 fiblem 28337 trlset 35886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-ral 2812 df-opab 4511 df-mpt 4512 |
Copyright terms: Public domain | W3C validator |