![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mpteq2da | Unicode version |
Description: Slightly more general equality inference for the maps to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq2da.1 | |
mpteq2da.2 |
Ref | Expression |
---|---|
mpteq2da |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . . 3 | |
2 | 1 | ax-gen 1618 | . 2 |
3 | mpteq2da.1 | . . 3 | |
4 | mpteq2da.2 | . . . 4 | |
5 | 4 | ex 434 | . . 3 |
6 | 3, 5 | ralrimi 2857 | . 2 |
7 | mpteq12f 4528 | . 2 | |
8 | 2, 6, 7 | sylancr 663 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 = wceq 1395 F/ wnf 1616
e. wcel 1818 A. wral 2807 e. cmpt 4510 |
This theorem is referenced by: mpteq2dva 4538 prodeq1f 13715 prodeq2ii 13720 gsumsnfd 16978 gsummoncoe1 18346 cayleyhamilton1 19393 xkocnv 20315 utopsnneiplem 20750 offval2f 27506 fpwrelmap 27556 esumf1o 28061 itg2addnclem 30066 ftc1anclem5 30094 mzpsubmpt 30675 mzpexpmpt 30677 refsum2cnlem1 31412 fmuldfeqlem1 31576 cncfiooicclem1 31696 dvmptfprodlem 31741 stoweidlem2 31784 stoweidlem6 31788 stoweidlem8 31790 stoweidlem17 31799 stoweidlem19 31801 stoweidlem20 31802 stoweidlem21 31803 stoweidlem22 31804 stoweidlem23 31805 stoweidlem32 31814 stoweidlem36 31818 stoweidlem40 31822 stoweidlem41 31823 stoweidlem47 31829 stirlinglem15 31870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-ral 2812 df-opab 4511 df-mpt 4512 |
Copyright terms: Public domain | W3C validator |