![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mpteqb | Unicode version |
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5981. (Contributed by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
mpteqb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . . 3 | |
2 | 1 | ralimi 2850 | . 2 |
3 | fneq1 5674 | . . . . . . 7 | |
4 | eqid 2457 | . . . . . . . 8 | |
5 | 4 | mptfng 5711 | . . . . . . 7 |
6 | eqid 2457 | . . . . . . . 8 | |
7 | 6 | mptfng 5711 | . . . . . . 7 |
8 | 3, 5, 7 | 3bitr4g 288 | . . . . . 6 |
9 | 8 | biimpd 207 | . . . . 5 |
10 | r19.26 2984 | . . . . . . 7 | |
11 | nfmpt1 4541 | . . . . . . . . . 10 | |
12 | nfmpt1 4541 | . . . . . . . . . 10 | |
13 | 11, 12 | nfeq 2630 | . . . . . . . . 9 |
14 | simpll 753 | . . . . . . . . . . . 12 | |
15 | 14 | fveq1d 5873 | . . . . . . . . . . 11 |
16 | 4 | fvmpt2 5963 | . . . . . . . . . . . 12 |
17 | 16 | ad2ant2lr 747 | . . . . . . . . . . 11 |
18 | 6 | fvmpt2 5963 | . . . . . . . . . . . 12 |
19 | 18 | ad2ant2l 745 | . . . . . . . . . . 11 |
20 | 15, 17, 19 | 3eqtr3d 2506 | . . . . . . . . . 10 |
21 | 20 | exp31 604 | . . . . . . . . 9 |
22 | 13, 21 | ralrimi 2857 | . . . . . . . 8 |
23 | ralim 2846 | . . . . . . . 8 | |
24 | 22, 23 | syl 16 | . . . . . . 7 |
25 | 10, 24 | syl5bir 218 | . . . . . 6 |
26 | 25 | expd 436 | . . . . 5 |
27 | 9, 26 | mpdd 40 | . . . 4 |
28 | 27 | com12 31 | . . 3 |
29 | eqid 2457 | . . . 4 | |
30 | mpteq12 4531 | . . . 4 | |
31 | 29, 30 | mpan 670 | . . 3 |
32 | 28, 31 | impbid1 203 | . 2 |
33 | 2, 32 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 cvv 3109
e. cmpt 4510 Fn wfn 5588 ` cfv 5593 |
This theorem is referenced by: eqfnfv 5981 eufnfv 6146 offveqb 6562 ramcl 14547 fucsect 15341 setcepi 15415 0frgp 16797 dprdf11 17063 dprdf11OLD 17070 dpjeq 17108 dpjeqOLD 17115 mvrf1 18081 mplmonmul 18126 frgpcyg 18612 ustuqtop 20749 mdegle0 22477 ply1nzb 22523 cvmliftphtlem 28762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |