![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mptfzshft | Unicode version |
Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. Formerly part of proof for fsumshft 13595. (Contributed by AV, 24-Aug-2019.) |
Ref | Expression |
---|---|
mptfzshft.1 | |
mptfzshft.2 | |
mptfzshft.3 |
Ref | Expression |
---|---|
mptfzshft |
M
,N
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6324 | . . . 4 | |
2 | eqid 2457 | . . . 4 | |
3 | 1, 2 | fnmpti 5714 | . . 3 |
4 | 3 | a1i 11 | . 2 |
5 | ovex 6324 | . . . 4 | |
6 | eqid 2457 | . . . 4 | |
7 | 5, 6 | fnmpti 5714 | . . 3 |
8 | simprr 757 | . . . . . . . . . . 11 | |
9 | 8 | oveq1d 6311 | . . . . . . . . . 10 |
10 | elfzelz 11717 | . . . . . . . . . . . 12 | |
11 | 10 | ad2antrl 727 | . . . . . . . . . . 11 |
12 | mptfzshft.1 | . . . . . . . . . . . 12 | |
13 | 12 | adantr 465 | . . . . . . . . . . 11 |
14 | zcn 10894 | . . . . . . . . . . . 12 | |
15 | zcn 10894 | . . . . . . . . . . . 12 | |
16 | npcan 9852 | . . . . . . . . . . . 12 | |
17 | 14, 15, 16 | syl2an 477 | . . . . . . . . . . 11 |
18 | 11, 13, 17 | syl2anc 661 | . . . . . . . . . 10 |
19 | 9, 18 | eqtr2d 2499 | . . . . . . . . 9 |
20 | simprl 756 | . . . . . . . . 9 | |
21 | 19, 20 | eqeltrrd 2546 | . . . . . . . 8 |
22 | mptfzshft.2 | . . . . . . . . . 10 | |
23 | 22 | adantr 465 | . . . . . . . . 9 |
24 | mptfzshft.3 | . . . . . . . . . 10 | |
25 | 24 | adantr 465 | . . . . . . . . 9 |
26 | 11, 13 | zsubcld 10999 | . . . . . . . . . 10 |
27 | 8, 26 | eqeltrd 2545 | . . . . . . . . 9 |
28 | fzaddel 11747 | . . . . . . . . 9 | |
29 | 23, 25, 27, 13, 28 | syl22anc 1229 | . . . . . . . 8 |
30 | 21, 29 | mpbird 232 | . . . . . . 7 |
31 | 30, 19 | jca 532 | . . . . . 6 |
32 | simprr 757 | . . . . . . . 8 | |
33 | simprl 756 | . . . . . . . . 9 | |
34 | 22 | adantr 465 | . . . . . . . . . 10 |
35 | 24 | adantr 465 | . . . . . . . . . 10 |
36 | elfzelz 11717 | . . . . . . . . . . 11 | |
37 | 36 | ad2antrl 727 | . . . . . . . . . 10 |
38 | 12 | adantr 465 | . . . . . . . . . 10 |
39 | 34, 35, 37, 38, 28 | syl22anc 1229 | . . . . . . . . 9 |
40 | 33, 39 | mpbid 210 | . . . . . . . 8 |
41 | 32, 40 | eqeltrd 2545 | . . . . . . 7 |
42 | 32 | oveq1d 6311 | . . . . . . . 8 |
43 | zcn 10894 | . . . . . . . . . 10 | |
44 | pncan 9849 | . . . . . . . . . 10 | |
45 | 43, 15, 44 | syl2an 477 | . . . . . . . . 9 |
46 | 37, 38, 45 | syl2anc 661 | . . . . . . . 8 |
47 | 42, 46 | eqtr2d 2499 | . . . . . . 7 |
48 | 41, 47 | jca 532 | . . . . . 6 |
49 | 31, 48 | impbida 832 | . . . . 5 |
50 | 49 | mptcnv 5413 | . . . 4 |
51 | 50 | fneq1d 5676 | . . 3 |
52 | 7, 51 | mpbiri 233 | . 2 |
53 | dff1o4 5829 | . 2 | |
54 | 4, 52, 53 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
e. cmpt 4510 `' ccnv 5003 Fn wfn 5588
-1-1-onto-> wf1o 5592
(class class class)co 6296 cc 9511 caddc 9516 cmin 9828 cz 10889 cfz 11701 |
This theorem is referenced by: fsumshft 13595 fprodshft 13780 gsummptshft 16956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 |
Copyright terms: Public domain | W3C validator |