MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptresid Unicode version

Theorem mptresid 5333
Description: The restricted identity expressed with the "maps to" notation. (Contributed by FL, 25-Apr-2012.)
Assertion
Ref Expression
mptresid
Distinct variable group:   ,

Proof of Theorem mptresid
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4512 . 2
2 opabresid 5332 . 2
31, 2eqtri 2486 1
Colors of variables: wff setvar class
Syntax hints:  /\wa 369  =wceq 1395  e.wcel 1818  {copab 4509  e.cmpt 4510   cid 4795  |`cres 5006
This theorem is referenced by:  idref  6153  2fvcoidd  6200  pwfseqlem5  9062  restid2  14828  curf2ndf  15516  hofcl  15528  yonedainv  15550  sylow1lem2  16619  sylow3lem1  16647  0frgp  16797  frgpcyg  18612  evpmodpmf1o  18632  txswaphmeolem  20305  idnghm  21250  dvexp  22356  dvmptid  22360  mvth  22393  plyid  22606  coeidp  22660  dgrid  22661  plyremlem  22700  taylply2  22763  wilthlem2  23343  ftalem7  23352  zrhre  27997  qqhre  27998  fourierdlem60  31949  fourierdlem61  31950  usgfis  32446  usgfisALT  32450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-res 5016
  Copyright terms: Public domain W3C validator