![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mptun | Unicode version |
Description: Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
mptun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 4512 | . 2 | |
2 | df-mpt 4512 | . . . 4 | |
3 | df-mpt 4512 | . . . 4 | |
4 | 2, 3 | uneq12i 3655 | . . 3 |
5 | elun 3644 | . . . . . . 7 | |
6 | 5 | anbi1i 695 | . . . . . 6 |
7 | andir 868 | . . . . . 6 | |
8 | 6, 7 | bitri 249 | . . . . 5 |
9 | 8 | opabbii 4516 | . . . 4 |
10 | unopab 4527 | . . . 4 | |
11 | 9, 10 | eqtr4i 2489 | . . 3 |
12 | 4, 11 | eqtr4i 2489 | . 2 |
13 | 1, 12 | eqtr4i 2489 | 1 |
Colors of variables: wff setvar class |
Syntax hints: \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 u. cun 3473
{ copab 4509 e. cmpt 4510 |
This theorem is referenced by: fmptap 6094 fmptapd 6095 partfun 27516 ptrest 30048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-opab 4511 df-mpt 4512 |
Copyright terms: Public domain | W3C validator |