MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mt2bi Unicode version

Theorem mt2bi 338
Description: A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.)
Hypothesis
Ref Expression
mt2bi.1
Assertion
Ref Expression
mt2bi

Proof of Theorem mt2bi
StepHypRef Expression
1 mt2bi.1 . . 3
21a1bi 337 . 2
3 con2b 334 . 2
42, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator