![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mt2d | Unicode version |
Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
mt2d.1 | |
mt2d.2 |
Ref | Expression |
---|---|
mt2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt2d.1 | . 2 | |
2 | mt2d.2 | . . 3 | |
3 | 2 | con2d 115 | . 2 |
4 | 1, 3 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4 |
This theorem is referenced by: mt2i 118 nsyl3 119 tz7.44-3 7093 sdomdomtr 7670 domsdomtr 7672 infdif 8610 ackbij1b 8640 isf32lem5 8758 alephreg 8978 cfpwsdom 8980 inar1 9174 tskcard 9180 npomex 9395 recnz 10963 rpnnen1lem5 11241 fznuz 11789 uznfz 11790 seqcoll2 12513 ramub1lem1 14544 pgpfac1lem1 17125 lsppratlem6 17798 nconsubb 19924 iunconlem 19928 clscon 19931 xkohaus 20154 reconnlem1 21331 ivthlem2 21864 perfectlem1 23504 lgseisenlem1 23624 ex-natded5.8-2 25135 oddpwdc 28293 erdszelem9 28643 heiborlem8 30314 lcvntr 34751 ncvr1 34997 llnneat 35238 2atnelpln 35268 lplnneat 35269 lplnnelln 35270 3atnelvolN 35310 lvolneatN 35312 lvolnelln 35313 lvolnelpln 35314 lplncvrlvol 35340 4atexlemntlpq 35792 cdleme0nex 36015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
Copyright terms: Public domain | W3C validator |