![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mt3d | Unicode version |
Description: Modus tollens deduction. (Contributed by NM, 26-Mar-1995.) |
Ref | Expression |
---|---|
mt3d.1 | |
mt3d.2 |
Ref | Expression |
---|---|
mt3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt3d.1 | . 2 | |
2 | mt3d.2 | . . 3 | |
3 | 2 | con1d 124 | . 2 |
4 | 1, 3 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4 |
This theorem is referenced by: mt3i 126 nsyl2 127 ecase23d 1332 disjss3 4451 nnsuc 6717 unxpdomlem2 7745 oismo 7986 cnfcom3lem 8168 cnfcom3lemOLD 8176 rankelb 8263 fin33i 8770 isf34lem4 8778 canthp1lem2 9052 gchcda1 9055 pwfseqlem3 9059 inttsk 9173 r1tskina 9181 nqereu 9328 zbtwnre 11209 discr1 12302 seqcoll2 12513 dvdseq 14033 bitsfzo 14085 bitsf1 14096 eucalglt 14214 4sqlem17 14479 4sqlem18 14480 ramubcl 14536 psgnunilem5 16519 odnncl 16569 gexnnod 16608 sylow1lem1 16618 torsubg 16860 prmcyg 16896 ablfacrplem 17116 pgpfac1lem2 17126 pgpfac1lem3a 17127 pgpfac1lem3 17128 xrsdsreclblem 18464 prmirredlem 18523 prmirredlemOLD 18526 ppttop 19508 pptbas 19509 regr1lem 20240 alexsublem 20544 reconnlem1 21331 metnrmlem1a 21362 vitalilem4 22020 vitalilem5 22021 itg2gt0 22167 rollelem 22390 lhop1lem 22414 coefv0 22645 plyexmo 22709 ppinprm 23426 chtnprm 23428 lgsdir 23605 lgseisenlem1 23624 2sqlem7 23645 2sqblem 23652 pntpbnd1 23771 lgamucov 28580 dfon2lem8 29222 nobndup 29460 nobnddown 29461 nofulllem5 29466 fdc 30238 ac6s6 30580 qirropth 30844 aacllem 33216 2atm 35251 llnmlplnN 35263 trlval3 35912 cdleme0moN 35950 cdleme18c 36018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
Copyright terms: Public domain | W3C validator |