MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mt4i Unicode version

Theorem mt4i 139
Description: Modus tollens inference. (Contributed by Wolf Lammen, 12-May-2013.)
Hypotheses
Ref Expression
mt4i.1
mt4i.2
Assertion
Ref Expression
mt4i

Proof of Theorem mt4i
StepHypRef Expression
1 mt4i.1 . . 3
21a1i 11 . 2
3 mt4i.2 . 2
42, 3mt4d 138 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4
This theorem is referenced by:  0mnnnnn0  10853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
  Copyright terms: Public domain W3C validator