![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mtbii | Unicode version |
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
mtbii.min | |
mtbii.maj |
Ref | Expression |
---|---|
mtbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbii.min | . 2 | |
2 | mtbii.maj | . . 3 | |
3 | 2 | biimprd 223 | . 2 |
4 | 1, 3 | mtoi 178 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 |
This theorem is referenced by: limom 6715 omopthlem2 7324 fineqv 7755 dfac2 8532 nd3 8985 axunndlem1 8991 axregndlem1 9000 axregndlem2 9001 axregnd 9002 axregndOLD 9003 axacndlem5 9010 canthp1lem2 9052 alephgch 9073 inatsk 9177 addnidpi 9300 indpi 9306 archnq 9379 fsumsplit 13562 sumsplit 13583 geoisum1c 13689 fprodm1 13771 m1dvdsndvds 14325 gexdvds 16604 chtub 23487 avril1 25171 vcoprne 25472 ballotlemi1 28441 ballotlemii 28442 distel 29236 fvnobday 29442 onsucsuccmpi 29908 nvelim 32205 0nodd 32498 2nodd 32500 bj-inftyexpidisj 34613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |