![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mul02lem1 | Unicode version |
Description: Lemma for mul02 9779. If any real does not produce when multiplied by , then any complex is equal to double itself. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul02lem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 9617 | . . . . 5 | |
2 | remulcl 9598 | . . . . 5 | |
3 | 1, 2 | mpan 670 | . . . 4 |
4 | ax-rrecex 9585 | . . . 4 | |
5 | 3, 4 | sylan 471 | . . 3 |
6 | 5 | adantr 465 | . 2 |
7 | 00id 9776 | . . . . 5 | |
8 | 7 | oveq2i 6307 | . . . 4 |
9 | 8 | eqcomi 2470 | . . 3 |
10 | simprl 756 | . . . . . . 7 | |
11 | 10 | recnd 9643 | . . . . . 6 |
12 | simplll 759 | . . . . . . 7 | |
13 | 12 | recnd 9643 | . . . . . 6 |
14 | 11, 13 | mulcld 9637 | . . . . 5 |
15 | simplr 755 | . . . . 5 | |
16 | 0cn 9609 | . . . . . 6 | |
17 | mul32 9768 | . . . . . 6 | |
18 | 16, 17 | mp3an3 1313 | . . . . 5 |
19 | 14, 15, 18 | syl2anc 661 | . . . 4 |
20 | mul31 9769 | . . . . . . . . 9 | |
21 | 16, 20 | mp3an3 1313 | . . . . . . . 8 |
22 | 11, 13, 21 | syl2anc 661 | . . . . . . 7 |
23 | simprr 757 | . . . . . . 7 | |
24 | 22, 23 | eqtrd 2498 | . . . . . 6 |
25 | 24 | oveq1d 6311 | . . . . 5 |
26 | mulid2 9615 | . . . . . 6 | |
27 | 26 | ad2antlr 726 | . . . . 5 |
28 | 25, 27 | eqtrd 2498 | . . . 4 |
29 | 19, 28 | eqtrd 2498 | . . 3 |
30 | 14, 15 | mulcld 9637 | . . . . 5 |
31 | adddi 9602 | . . . . . 6 | |
32 | 16, 16, 31 | mp3an23 1316 | . . . . 5 |
33 | 30, 32 | syl 16 | . . . 4 |
34 | 29, 29 | oveq12d 6314 | . . . 4 |
35 | 33, 34 | eqtrd 2498 | . . 3 |
36 | 9, 29, 35 | 3eqtr3a 2522 | . 2 |
37 | 6, 36 | rexlimddv 2953 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
E. wrex 2808 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 |
This theorem is referenced by: mul02lem2 9778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-ltxr 9654 |
Copyright terms: Public domain | W3C validator |