![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mul12i | Unicode version |
Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
mul.1 | |
mul.2 | |
mul.3 |
Ref | Expression |
---|---|
mul12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 | |
2 | mul.2 | . 2 | |
3 | mul.3 | . 2 | |
4 | mul12 9767 | . 2 | |
5 | 1, 2, 3, 4 | mp3an 1324 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
(class class class)co 6296 cc 9511 cmul 9518 |
This theorem is referenced by: faclbnd4lem1 12371 decsplit 14569 root1eq1 23129 cxpeq 23131 1cubrlem 23172 efiatan2 23248 2efiatan 23249 tanatan 23250 log2ublem2 23278 log2ublem3 23279 bposlem8 23566 ax5seglem7 24238 ip1ilem 25741 ipasslem10 25754 polid2i 26074 bpoly3 29820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-mulcom 9577 ax-mulass 9579 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-iota 5556 df-fv 5601 df-ov 6299 |
Copyright terms: Public domain | W3C validator |