Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul4i Unicode version

Theorem mul4i 9798
 Description: Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.)
Hypotheses
Ref Expression
mul.1
mul.2
mul.3
mul4.4
Assertion
Ref Expression
mul4i

Proof of Theorem mul4i
StepHypRef Expression
1 mul.1 . 2
2 mul.2 . 2
3 mul.3 . 2
4 mul4.4 . 2
5 mul4 9770 . 2
61, 2, 3, 4, 5mp4an 673 1
 Colors of variables: wff setvar class Syntax hints:  =wceq 1395  e.wcel 1818  (class class class)co 6296   cc 9511   cmul 9518 This theorem is referenced by:  faclbnd4lem1  12371  bposlem8  23566  normlem1  26027 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-mulcl 9575  ax-mulcom 9577  ax-mulass 9579 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-iota 5556  df-fv 5601  df-ov 6299
 Copyright terms: Public domain W3C validator