![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mul4sq | Unicode version |
Description: Euler's four-square
identity: The product of two sums of four squares
is also a sum of four squares. This is usually quoted as an explicit
formula involving eight real variables; we save some time by working
with complex numbers (gaussian integers) instead, so that we only have
to work with four variables, and also hiding the actual formula for the
product in the proof of mul4sqlem 14471. (For the curious, the explicit
formula that is used is
( | | 2 | | 2 ) ( | | 2 | | 2 ) =
| | 2 | | 2 .)
(Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
4sq.1 |
Ref | Expression |
---|---|
mul4sq |
S
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sq.1 | . . 3 | |
2 | 1 | 4sqlem4 14470 | . 2 |
3 | 1 | 4sqlem4 14470 | . 2 |
4 | reeanv 3025 | . . 3 | |
5 | reeanv 3025 | . . . . 5 | |
6 | simpll 753 | . . . . . . . . . . . . 13 | |
7 | gzabssqcl 14459 | . . . . . . . . . . . . 13 | |
8 | 6, 7 | syl 16 | . . . . . . . . . . . 12 |
9 | simprl 756 | . . . . . . . . . . . . 13 | |
10 | gzabssqcl 14459 | . . . . . . . . . . . . 13 | |
11 | 9, 10 | syl 16 | . . . . . . . . . . . 12 |
12 | 8, 11 | nn0addcld 10881 | . . . . . . . . . . 11 |
13 | 12 | nn0cnd 10879 | . . . . . . . . . 10 |
14 | 13 | div1d 10337 | . . . . . . . . 9 |
15 | simplr 755 | . . . . . . . . . . . . 13 | |
16 | gzabssqcl 14459 | . . . . . . . . . . . . 13 | |
17 | 15, 16 | syl 16 | . . . . . . . . . . . 12 |
18 | simprr 757 | . . . . . . . . . . . . 13 | |
19 | gzabssqcl 14459 | . . . . . . . . . . . . 13 | |
20 | 18, 19 | syl 16 | . . . . . . . . . . . 12 |
21 | 17, 20 | nn0addcld 10881 | . . . . . . . . . . 11 |
22 | 21 | nn0cnd 10879 | . . . . . . . . . 10 |
23 | 22 | div1d 10337 | . . . . . . . . 9 |
24 | 14, 23 | oveq12d 6314 | . . . . . . . 8 |
25 | eqid 2457 | . . . . . . . . 9 | |
26 | eqid 2457 | . . . . . . . . 9 | |
27 | 1nn 10572 | . . . . . . . . . 10 | |
28 | 27 | a1i 11 | . . . . . . . . 9 |
29 | gzsubcl 14458 | . . . . . . . . . . . . 13 | |
30 | 29 | adantr 465 | . . . . . . . . . . . 12 |
31 | gzcn 14450 | . . . . . . . . . . . 12 | |
32 | 30, 31 | syl 16 | . . . . . . . . . . 11 |
33 | 32 | div1d 10337 | . . . . . . . . . 10 |
34 | 33, 30 | eqeltrd 2545 | . . . . . . . . 9 |
35 | gzsubcl 14458 | . . . . . . . . . . . . 13 | |
36 | 35 | adantl 466 | . . . . . . . . . . . 12 |
37 | gzcn 14450 | . . . . . . . . . . . 12 | |
38 | 36, 37 | syl 16 | . . . . . . . . . . 11 |
39 | 38 | div1d 10337 | . . . . . . . . . 10 |
40 | 39, 36 | eqeltrd 2545 | . . . . . . . . 9 |
41 | 14, 12 | eqeltrd 2545 | . . . . . . . . 9 |
42 | 1, 6, 9, 15, 18, 25, 26, 28, 34, 40, 41 | mul4sqlem 14471 | . . . . . . . 8 |
43 | 24, 42 | eqeltrrd 2546 | . . . . . . 7 |
44 | oveq12 6305 | . . . . . . . 8 | |
45 | 44 | eleq1d 2526 | . . . . . . 7 |
46 | 43, 45 | syl5ibrcom 222 | . . . . . 6 |
47 | 46 | rexlimdvva 2956 | . . . . 5 |
48 | 5, 47 | syl5bir 218 | . . . 4 |
49 | 48 | rexlimivv 2954 | . . 3 |
50 | 4, 49 | sylbir 213 | . 2 |
51 | 2, 3, 50 | syl2anb 479 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 { cab 2442
E. wrex 2808 ` cfv 5593 (class class class)co 6296
cc 9511 1 c1 9514 caddc 9516 cmul 9518 cmin 9828 cdiv 10231 cn 10561 2 c2 10610 cn0 10820
cz 10889 cexp 12166 cabs 13067 cgz 14447 |
This theorem is referenced by: 4sqlem19 14481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-gz 14448 |
Copyright terms: Public domain | W3C validator |