![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > muladd | Unicode version |
Description: Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
muladd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcl 9595 | . . 3 | |
2 | adddi 9602 | . . . 4 | |
3 | 2 | 3expb 1197 | . . 3 |
4 | 1, 3 | sylan 471 | . 2 |
5 | adddir 9608 | . . . . 5 | |
6 | 5 | 3expa 1196 | . . . 4 |
7 | 6 | adantrr 716 | . . 3 |
8 | adddir 9608 | . . . . 5 | |
9 | 8 | 3expa 1196 | . . . 4 |
10 | 9 | adantrl 715 | . . 3 |
11 | 7, 10 | oveq12d 6314 | . 2 |
12 | mulcl 9597 | . . . . 5 | |
13 | 12 | ad2ant2r 746 | . . . 4 |
14 | mulcl 9597 | . . . . 5 | |
15 | 14 | ad2ant2lr 747 | . . . 4 |
16 | mulcl 9597 | . . . . . . 7 | |
17 | mulcl 9597 | . . . . . . 7 | |
18 | addcl 9595 | . . . . . . 7 | |
19 | 16, 17, 18 | syl2an 477 | . . . . . 6 |
20 | 19 | anandirs 831 | . . . . 5 |
21 | 20 | adantrl 715 | . . . 4 |
22 | 13, 15, 21 | add32d 9825 | . . 3 |
23 | mulcom 9599 | . . . . . . 7 | |
24 | 23 | ad2ant2l 745 | . . . . . 6 |
25 | 24 | oveq2d 6312 | . . . . 5 |
26 | 16 | ad2ant2rl 748 | . . . . . 6 |
27 | 17 | ad2ant2l 745 | . . . . . 6 |
28 | 13, 26, 27 | addassd 9639 | . . . . 5 |
29 | mulcl 9597 | . . . . . . . 8 | |
30 | 29 | ancoms 453 | . . . . . . 7 |
31 | 30 | ad2ant2l 745 | . . . . . 6 |
32 | 13, 26, 31 | add32d 9825 | . . . . 5 |
33 | 25, 28, 32 | 3eqtr3d 2506 | . . . 4 |
34 | mulcom 9599 | . . . . 5 | |
35 | 34 | ad2ant2lr 747 | . . . 4 |
36 | 33, 35 | oveq12d 6314 | . . 3 |
37 | addcl 9595 | . . . . . 6 | |
38 | 12, 30, 37 | syl2an 477 | . . . . 5 |
39 | 38 | an4s 826 | . . . 4 |
40 | mulcl 9597 | . . . . . 6 | |
41 | 40 | ancoms 453 | . . . . 5 |
42 | 41 | ad2ant2lr 747 | . . . 4 |
43 | 39, 26, 42 | addassd 9639 | . . 3 |
44 | 22, 36, 43 | 3eqtrd 2502 | . 2 |
45 | 4, 11, 44 | 3eqtrd 2502 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 (class class class)co 6296
cc 9511 caddc 9516 cmul 9518 |
This theorem is referenced by: mulsub 10024 muladdi 10032 muladdd 10039 sqabsadd 13115 demoivreALT 13936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-ltxr 9654 |
Copyright terms: Public domain | W3C validator |