![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mulass | Unicode version |
Description: Alias for ax-mulass 9579, for naming consistency with mulassi 9626. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 9579 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ w3a 973
= wceq 1395 e. wcel 1818 (class class class)co 6296
cc 9511 cmul 9518 |
This theorem is referenced by: mulid1 9614 mulassi 9626 mulassd 9640 mul12 9767 mul32 9768 mul31 9769 mul4 9770 00id 9776 divass 10250 cju 10557 xmulasslem3 11507 faclbnd5 12376 bcval5 12396 remim 12950 imval2 12984 sqrlem7 13082 sqrtneglem 13100 sqreulem 13192 clim2div 13698 prodfmul 13699 prodmolem3 13740 sinhval 13889 coshval 13890 absefib 13933 efieq1re 13934 muldvds1 14008 muldvds2 14009 dvdsmulc 14011 dvdsmulcr 14013 dvdstr 14018 eulerthlem2 14312 ablfacrp 17117 cncrng 18439 nmoleub2lem3 21598 itg2mulc 22154 abssinper 22911 sinasin 23220 dchrabl 23529 bposlem6 23564 bposlem9 23567 lgsdir 23605 lgsdi 23607 2sqlem6 23644 rpvmasum2 23697 ablomul 25357 cnrngo 25405 cncvc 25476 ipasslem5 25750 ipasslem11 25755 dvasin 30103 pellexlem2 30766 jm2.25 30941 expgrowth 31240 2zrngmsgrp 32753 |
This theorem was proved from axioms: ax-mulass 9579 |
Copyright terms: Public domain | W3C validator |