![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mulclprlem | Unicode version |
Description: Lemma to prove downward closure in positive real multiplication. Part of proof of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 14-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulclprlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprnq 9390 | . . . . . 6 | |
2 | elprnq 9390 | . . . . . 6 | |
3 | recclnq 9365 | . . . . . . . . 9 | |
4 | 3 | adantl 466 | . . . . . . . 8 |
5 | vex 3112 | . . . . . . . . 9 | |
6 | ovex 6324 | . . . . . . . . 9 | |
7 | ltmnq 9371 | . . . . . . . . 9 | |
8 | fvex 5881 | . . . . . . . . 9 | |
9 | mulcomnq 9352 | . . . . . . . . 9 | |
10 | 5, 6, 7, 8, 9 | caovord2 6487 | . . . . . . . 8 |
11 | 4, 10 | syl 16 | . . . . . . 7 |
12 | mulassnq 9358 | . . . . . . . . . 10 | |
13 | recidnq 9364 | . . . . . . . . . . 11 | |
14 | 13 | oveq2d 6312 | . . . . . . . . . 10 |
15 | 12, 14 | syl5eq 2510 | . . . . . . . . 9 |
16 | mulidnq 9362 | . . . . . . . . 9 | |
17 | 15, 16 | sylan9eqr 2520 | . . . . . . . 8 |
18 | 17 | breq2d 4464 | . . . . . . 7 |
19 | 11, 18 | bitrd 253 | . . . . . 6 |
20 | 1, 2, 19 | syl2an 477 | . . . . 5 |
21 | prcdnq 9392 | . . . . . 6 | |
22 | 21 | adantr 465 | . . . . 5 |
23 | 20, 22 | sylbid 215 | . . . 4 |
24 | df-mp 9383 | . . . . . . . . 9 | |
25 | mulclnq 9346 | . . . . . . . . 9 | |
26 | 24, 25 | genpprecl 9400 | . . . . . . . 8 |
27 | 26 | exp4b 607 | . . . . . . 7 |
28 | 27 | com34 83 | . . . . . 6 |
29 | 28 | imp32 433 | . . . . 5 |
30 | 29 | adantlr 714 | . . . 4 |
31 | 23, 30 | syld 44 | . . 3 |
32 | 31 | adantr 465 | . 2 |
33 | 2 | adantl 466 | . . 3 |
34 | mulassnq 9358 | . . . . . 6 | |
35 | mulcomnq 9352 | . . . . . . . 8 | |
36 | 35, 13 | syl5eq 2510 | . . . . . . 7 |
37 | 36 | oveq2d 6312 | . . . . . 6 |
38 | 34, 37 | syl5eq 2510 | . . . . 5 |
39 | mulidnq 9362 | . . . . 5 | |
40 | 38, 39 | sylan9eq 2518 | . . . 4 |
41 | 40 | eleq1d 2526 | . . 3 |
42 | 33, 41 | sylan 471 | . 2 |
43 | 32, 42 | sylibd 214 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 e. wcel 1818 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cnq 9251
c1q 9252
cmq 9255
crq 9256
cltq 9257
cnp 9258
cmp 9261 |
This theorem is referenced by: mulclpr 9419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-ni 9271 df-mi 9273 df-lti 9274 df-mpq 9308 df-ltpq 9309 df-enq 9310 df-nq 9311 df-erq 9312 df-mq 9314 df-1nq 9315 df-rq 9316 df-ltnq 9317 df-np 9380 df-mp 9383 |
Copyright terms: Public domain | W3C validator |