![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mulcmpblnrlem | Unicode version |
Description: Lemma used in lemma showing compatibility of multiplication. (Contributed by NM, 4-Sep-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulcmpblnrlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6303 | . . . . . . . . 9 | |
2 | distrpr 9427 | . . . . . . . . . 10 | |
3 | mulcompr 9422 | . . . . . . . . . 10 | |
4 | mulcompr 9422 | . . . . . . . . . . 11 | |
5 | mulcompr 9422 | . . . . . . . . . . 11 | |
6 | 4, 5 | oveq12i 6308 | . . . . . . . . . 10 |
7 | 2, 3, 6 | 3eqtr4i 2496 | . . . . . . . . 9 |
8 | distrpr 9427 | . . . . . . . . . 10 | |
9 | mulcompr 9422 | . . . . . . . . . 10 | |
10 | mulcompr 9422 | . . . . . . . . . . 11 | |
11 | mulcompr 9422 | . . . . . . . . . . 11 | |
12 | 10, 11 | oveq12i 6308 | . . . . . . . . . 10 |
13 | 8, 9, 12 | 3eqtr4i 2496 | . . . . . . . . 9 |
14 | 1, 7, 13 | 3eqtr3g 2521 | . . . . . . . 8 |
15 | 14 | oveq1d 6311 | . . . . . . 7 |
16 | addasspr 9421 | . . . . . . . 8 | |
17 | oveq2 6304 | . . . . . . . . . 10 | |
18 | distrpr 9427 | . . . . . . . . . 10 | |
19 | distrpr 9427 | . . . . . . . . . 10 | |
20 | 17, 18, 19 | 3eqtr3g 2521 | . . . . . . . . 9 |
21 | 20 | oveq2d 6312 | . . . . . . . 8 |
22 | 16, 21 | syl5eq 2510 | . . . . . . 7 |
23 | 15, 22 | sylan9eq 2518 | . . . . . 6 |
24 | ovex 6324 | . . . . . . 7 | |
25 | ovex 6324 | . . . . . . 7 | |
26 | ovex 6324 | . . . . . . 7 | |
27 | addcompr 9420 | . . . . . . 7 | |
28 | addasspr 9421 | . . . . . . 7 | |
29 | 24, 25, 26, 27, 28 | caov32 6502 | . . . . . 6 |
30 | ovex 6324 | . . . . . . 7 | |
31 | ovex 6324 | . . . . . . 7 | |
32 | ovex 6324 | . . . . . . 7 | |
33 | 30, 31, 32, 27, 28 | caov12 6503 | . . . . . 6 |
34 | 23, 29, 33 | 3eqtr3g 2521 | . . . . 5 |
35 | 34 | oveq2d 6312 | . . . 4 |
36 | oveq2 6304 | . . . . . . . . . . 11 | |
37 | distrpr 9427 | . . . . . . . . . . 11 | |
38 | distrpr 9427 | . . . . . . . . . . 11 | |
39 | 36, 37, 38 | 3eqtr3g 2521 | . . . . . . . . . 10 |
40 | 39 | oveq2d 6312 | . . . . . . . . 9 |
41 | addasspr 9421 | . . . . . . . . 9 | |
42 | 40, 41 | syl6eqr 2516 | . . . . . . . 8 |
43 | oveq1 6303 | . . . . . . . . . 10 | |
44 | distrpr 9427 | . . . . . . . . . . 11 | |
45 | mulcompr 9422 | . . . . . . . . . . 11 | |
46 | mulcompr 9422 | . . . . . . . . . . . 12 | |
47 | mulcompr 9422 | . . . . . . . . . . . 12 | |
48 | 46, 47 | oveq12i 6308 | . . . . . . . . . . 11 |
49 | 44, 45, 48 | 3eqtr4i 2496 | . . . . . . . . . 10 |
50 | distrpr 9427 | . . . . . . . . . . 11 | |
51 | mulcompr 9422 | . . . . . . . . . . 11 | |
52 | mulcompr 9422 | . . . . . . . . . . . 12 | |
53 | mulcompr 9422 | . . . . . . . . . . . 12 | |
54 | 52, 53 | oveq12i 6308 | . . . . . . . . . . 11 |
55 | 50, 51, 54 | 3eqtr4i 2496 | . . . . . . . . . 10 |
56 | 43, 49, 55 | 3eqtr3g 2521 | . . . . . . . . 9 |
57 | 56 | oveq1d 6311 | . . . . . . . 8 |
58 | 42, 57 | sylan9eqr 2520 | . . . . . . 7 |
59 | ovex 6324 | . . . . . . . 8 | |
60 | ovex 6324 | . . . . . . . 8 | |
61 | 59, 25, 60, 27, 28 | caov12 6503 | . . . . . . 7 |
62 | ovex 6324 | . . . . . . . 8 | |
63 | ovex 6324 | . . . . . . . 8 | |
64 | 62, 31, 63, 27, 28 | caov32 6502 | . . . . . . 7 |
65 | 58, 61, 64 | 3eqtr3g 2521 | . . . . . 6 |
66 | 65 | oveq1d 6311 | . . . . 5 |
67 | addasspr 9421 | . . . . 5 | |
68 | 66, 67 | syl6eq 2514 | . . . 4 |
69 | 35, 68 | eqtr4d 2501 | . . 3 |
70 | ovex 6324 | . . . 4 | |
71 | ovex 6324 | . . . 4 | |
72 | 70, 71, 25, 27, 28 | caov13 6505 | . . 3 |
73 | addasspr 9421 | . . 3 | |
74 | 69, 72, 73 | 3eqtr3g 2521 | . 2 |
75 | 24, 26, 62, 27, 28, 63 | caov4 6506 | . . 3 |
76 | 75 | oveq2i 6307 | . 2 |
77 | 59, 60, 30, 27, 28, 32 | caov42 6508 | . . 3 |
78 | 77 | oveq2i 6307 | . 2 |
79 | 74, 76, 78 | 3eqtr3g 2521 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 (class class class)co 6296
cpp 9260
cmp 9261 |
This theorem is referenced by: mulcmpblnr 9469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-ni 9271 df-pli 9272 df-mi 9273 df-lti 9274 df-plpq 9307 df-mpq 9308 df-ltpq 9309 df-enq 9310 df-nq 9311 df-erq 9312 df-plq 9313 df-mq 9314 df-1nq 9315 df-rq 9316 df-ltnq 9317 df-np 9380 df-plp 9382 df-mp 9383 |
Copyright terms: Public domain | W3C validator |