![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mulcnsr | Unicode version |
Description: Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulcnsr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 4716 | . 2 | |
2 | oveq1 6303 | . . . . 5 | |
3 | oveq1 6303 | . . . . . 6 | |
4 | 3 | oveq2d 6312 | . . . . 5 |
5 | 2, 4 | oveqan12d 6315 | . . . 4 |
6 | oveq1 6303 | . . . . 5 | |
7 | oveq1 6303 | . . . . 5 | |
8 | 6, 7 | oveqan12rd 6316 | . . . 4 |
9 | 5, 8 | opeq12d 4225 | . . 3 |
10 | oveq2 6304 | . . . . 5 | |
11 | oveq2 6304 | . . . . . 6 | |
12 | 11 | oveq2d 6312 | . . . . 5 |
13 | 10, 12 | oveqan12d 6315 | . . . 4 |
14 | oveq2 6304 | . . . . 5 | |
15 | oveq2 6304 | . . . . 5 | |
16 | 14, 15 | oveqan12d 6315 | . . . 4 |
17 | 13, 16 | opeq12d 4225 | . . 3 |
18 | 9, 17 | sylan9eq 2518 | . 2 |
19 | df-mul 9525 | . . 3 | |
20 | df-c 9519 | . . . . . . 7 | |
21 | 20 | eleq2i 2535 | . . . . . 6 |
22 | 20 | eleq2i 2535 | . . . . . 6 |
23 | 21, 22 | anbi12i 697 | . . . . 5 |
24 | 23 | anbi1i 695 | . . . 4 |
25 | 24 | oprabbii 6352 | . . 3 |
26 | 19, 25 | eqtri 2486 | . 2 |
27 | 1, 18, 26 | ov3 6439 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
<. cop 4035 X. cxp 5002 (class class class)co 6296
{ coprab 6297 cnr 9264 cm1r 9267
cplr 9268
cmr 9269
cc 9511 cmul 9518 |
This theorem is referenced by: mulresr 9537 mulcnsrec 9542 axmulf 9544 axi2m1 9557 axcnre 9562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-c 9519 df-mul 9525 |
Copyright terms: Public domain | W3C validator |