![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mulcnsrec | Unicode version |
Description: Technical trick to permit
re-use of some equivalence class lemmas for
operation laws. The trick involves ecid 7395,
which shows that the coset of
the converse epsilon relation (which is not an equivalence relation)
leaves a set unchanged. See also dfcnqs 9540.
Note: This is the last lemma (from which the axioms will be derived) in the construction of real and complex numbers. The construction starts at cnpi 9243. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulcnsrec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcnsr 9534 | . 2 | |
2 | opex 4716 | . . . 4 | |
3 | 2 | ecid 7395 | . . 3 |
4 | opex 4716 | . . . 4 | |
5 | 4 | ecid 7395 | . . 3 |
6 | 3, 5 | oveq12i 6308 | . 2 |
7 | opex 4716 | . . 3 | |
8 | 7 | ecid 7395 | . 2 |
9 | 1, 6, 8 | 3eqtr4g 2523 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 <. cop 4035
cep 4794
`' ccnv 5003 (class class class)co 6296
[ cec 7328 cnr 9264 cm1r 9267
cplr 9268
cmr 9269
cmul 9518 |
This theorem is referenced by: axmulcom 9553 axmulass 9555 axdistr 9556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-eprel 4796 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-ec 7332 df-c 9519 df-mul 9525 |
Copyright terms: Public domain | W3C validator |