![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mulge0b | Unicode version |
Description: A condition for multiplication to be nonnegative. (Contributed by Scott Fenton, 25-Jun-2013.) |
Ref | Expression |
---|---|
mulge0b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ianor 488 | . . . . 5 | |
2 | 0re 9617 | . . . . . . . . . 10 | |
3 | ltnle 9685 | . . . . . . . . . 10 | |
4 | 2, 3 | mpan 670 | . . . . . . . . 9 |
5 | 4 | adantr 465 | . . . . . . . 8 |
6 | ltnle 9685 | . . . . . . . . . 10 | |
7 | 2, 6 | mpan 670 | . . . . . . . . 9 |
8 | 7 | adantl 466 | . . . . . . . 8 |
9 | 5, 8 | orbi12d 709 | . . . . . . 7 |
10 | 9 | adantr 465 | . . . . . 6 |
11 | ltle 9694 | . . . . . . . . . . . 12 | |
12 | 2, 11 | mpan 670 | . . . . . . . . . . 11 |
13 | 12 | imp 429 | . . . . . . . . . 10 |
14 | 13 | ad2ant2rl 748 | . . . . . . . . 9 |
15 | remulcl 9598 | . . . . . . . . . . . 12 | |
16 | 15 | adantr 465 | . . . . . . . . . . 11 |
17 | simprl 756 | . . . . . . . . . . 11 | |
18 | simpll 753 | . . . . . . . . . . 11 | |
19 | simprr 757 | . . . . . . . . . . 11 | |
20 | divge0 10436 | . . . . . . . . . . 11 | |
21 | 16, 17, 18, 19, 20 | syl22anc 1229 | . . . . . . . . . 10 |
22 | recn 9603 | . . . . . . . . . . . 12 | |
23 | 22 | ad2antlr 726 | . . . . . . . . . . 11 |
24 | recn 9603 | . . . . . . . . . . . 12 | |
25 | 24 | ad2antrr 725 | . . . . . . . . . . 11 |
26 | gt0ne0 10042 | . . . . . . . . . . . 12 | |
27 | 26 | ad2ant2rl 748 | . . . . . . . . . . 11 |
28 | 23, 25, 27 | divcan3d 10350 | . . . . . . . . . 10 |
29 | 21, 28 | breqtrd 4476 | . . . . . . . . 9 |
30 | 14, 29 | jca 532 | . . . . . . . 8 |
31 | 30 | expr 615 | . . . . . . 7 |
32 | 15 | adantr 465 | . . . . . . . . . . 11 |
33 | simprl 756 | . . . . . . . . . . 11 | |
34 | simplr 755 | . . . . . . . . . . 11 | |
35 | simprr 757 | . . . . . . . . . . 11 | |
36 | divge0 10436 | . . . . . . . . . . 11 | |
37 | 32, 33, 34, 35, 36 | syl22anc 1229 | . . . . . . . . . 10 |
38 | 24 | ad2antrr 725 | . . . . . . . . . . 11 |
39 | 22 | ad2antlr 726 | . . . . . . . . . . 11 |
40 | gt0ne0 10042 | . . . . . . . . . . . 12 | |
41 | 40 | ad2ant2l 745 | . . . . . . . . . . 11 |
42 | 38, 39, 41 | divcan4d 10351 | . . . . . . . . . 10 |
43 | 37, 42 | breqtrd 4476 | . . . . . . . . 9 |
44 | ltle 9694 | . . . . . . . . . . . 12 | |
45 | 2, 44 | mpan 670 | . . . . . . . . . . 11 |
46 | 45 | imp 429 | . . . . . . . . . 10 |
47 | 46 | ad2ant2l 745 | . . . . . . . . 9 |
48 | 43, 47 | jca 532 | . . . . . . . 8 |
49 | 48 | expr 615 | . . . . . . 7 |
50 | 31, 49 | jaod 380 | . . . . . 6 |
51 | 10, 50 | sylbird 235 | . . . . 5 |
52 | 1, 51 | syl5bi 217 | . . . 4 |
53 | 52 | orrd 378 | . . 3 |
54 | 53 | ex 434 | . 2 |
55 | le0neg1 10085 | . . . . 5 | |
56 | le0neg1 10085 | . . . . 5 | |
57 | 55, 56 | bi2anan9 873 | . . . 4 |
58 | renegcl 9905 | . . . . . 6 | |
59 | renegcl 9905 | . . . . . 6 | |
60 | mulge0 10095 | . . . . . . . 8 | |
61 | 60 | an4s 826 | . . . . . . 7 |
62 | 61 | ex 434 | . . . . . 6 |
63 | 58, 59, 62 | syl2an 477 | . . . . 5 |
64 | mul2neg 10021 | . . . . . . 7 | |
65 | 24, 22, 64 | syl2an 477 | . . . . . 6 |
66 | 65 | breq2d 4464 | . . . . 5 |
67 | 63, 66 | sylibd 214 | . . . 4 |
68 | 57, 67 | sylbid 215 | . . 3 |
69 | mulge0 10095 | . . . . 5 | |
70 | 69 | an4s 826 | . . . 4 |
71 | 70 | ex 434 | . . 3 |
72 | 68, 71 | jaod 380 | . 2 |
73 | 54, 72 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
class class class wbr 4452 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 cmul 9518 clt 9649 cle 9650 -u cneg 9829 cdiv 10231 |
This theorem is referenced by: mulle0b 10438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 |
Copyright terms: Public domain | W3C validator |