![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mulidnq | Unicode version |
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulidnq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nq 9327 | . . 3 | |
2 | mulpqnq 9340 | . . 3 | |
3 | 1, 2 | mpan2 671 | . 2 |
4 | relxp 5115 | . . . . . . 7 | |
5 | elpqn 9324 | . . . . . . 7 | |
6 | 1st2nd 6846 | . . . . . . 7 | |
7 | 4, 5, 6 | sylancr 663 | . . . . . 6 |
8 | df-1nq 9315 | . . . . . . 7 | |
9 | 8 | a1i 11 | . . . . . 6 |
10 | 7, 9 | oveq12d 6314 | . . . . 5 |
11 | xp1st 6830 | . . . . . . 7 | |
12 | 5, 11 | syl 16 | . . . . . 6 |
13 | xp2nd 6831 | . . . . . . 7 | |
14 | 5, 13 | syl 16 | . . . . . 6 |
15 | 1pi 9282 | . . . . . . 7 | |
16 | 15 | a1i 11 | . . . . . 6 |
17 | mulpipq 9339 | . . . . . 6 | |
18 | 12, 14, 16, 16, 17 | syl22anc 1229 | . . . . 5 |
19 | mulidpi 9285 | . . . . . . . 8 | |
20 | 11, 19 | syl 16 | . . . . . . 7 |
21 | mulidpi 9285 | . . . . . . . 8 | |
22 | 13, 21 | syl 16 | . . . . . . 7 |
23 | 20, 22 | opeq12d 4225 | . . . . . 6 |
24 | 5, 23 | syl 16 | . . . . 5 |
25 | 10, 18, 24 | 3eqtrd 2502 | . . . 4 |
26 | 25, 7 | eqtr4d 2501 | . . 3 |
27 | 26 | fveq2d 5875 | . 2 |
28 | nqerid 9332 | . 2 | |
29 | 3, 27, 28 | 3eqtrd 2502 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 <. cop 4035 X. cxp 5002
Rel wrel 5009
` cfv 5593 (class class class)co 6296
c1st 6798
c2nd 6799
c1o 7142
cnpi 9243 cmi 9245
cmpq 9248 cnq 9251
c1q 9252
cerq 9253
cmq 9255 |
This theorem is referenced by: recmulnq 9363 ltaddnq 9373 halfnq 9375 ltrnq 9378 addclprlem1 9415 addclprlem2 9416 mulclprlem 9418 1idpr 9428 prlem934 9432 prlem936 9446 reclem3pr 9448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-ni 9271 df-mi 9273 df-lti 9274 df-mpq 9308 df-enq 9310 df-nq 9311 df-erq 9312 df-mq 9314 df-1nq 9315 |
Copyright terms: Public domain | W3C validator |