![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > n0i | Unicode version |
Description: If a set has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
n0i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3788 | . . 3 | |
2 | eleq2 2530 | . . 3 | |
3 | 1, 2 | mtbiri 303 | . 2 |
4 | 3 | con2i 120 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 e. wcel 1818 c0 3784 |
This theorem is referenced by: ne0i 3790 oprcl 4242 disjss3 4451 iin0 4626 snsn0non 5001 isomin 6233 ovrcl 6329 tfrlem16 7081 oalimcl 7228 omlimcl 7246 oaabs2 7313 ecexr 7335 elpmi 7457 elmapex 7459 pmresg 7466 pmsspw 7473 ixpssmap2g 7518 ixpssmapg 7519 resixpfo 7527 php3 7723 cantnfp1lem2 8119 cantnflem1 8129 cantnfp1lem2OLD 8145 cantnflem1OLD 8152 cnfcom2lem 8166 cnfcom2lemOLD 8174 rankxplim2 8319 rankxplim3 8320 cardlim 8374 alephnbtwn 8473 pwcdadom 8617 ttukeylem5 8914 r1wunlim 9136 nnunb 10816 ssnn0fi 12094 ruclem13 13975 ramtub 14530 elbasfv 14679 elbasov 14680 restsspw 14829 homarcl 15355 grpidval 15887 odlem2 16563 efgrelexlema 16767 subcmn 16845 dvdsrval 17294 pf1rcl 18385 elocv 18699 matrcl 18914 0top 19485 ppttop 19508 pptbas 19509 restrcl 19658 ssrest 19677 iscnp2 19740 lmmo 19881 zfbas 20397 rnelfmlem 20453 isfcls 20510 isnghm 21230 iscau2 21716 itg2cnlem1 22168 itgsubstlem 22449 dchrrcl 23515 eleenn 24199 nbgranself2 24436 uvtxisvtx 24490 uvtx01vtx 24492 2spot0 25064 hon0 26712 dmadjrnb 26825 eulerpartlemgvv 28315 indispcon 28679 cvmtop1 28705 cvmtop2 28706 mrsub0 28876 mrsubf 28877 mrsubccat 28878 mrsubcn 28879 mrsubco 28881 mrsubvrs 28882 msubf 28892 mclsrcl 28921 funpartlem 29592 tailfb 30195 mapco2g 30646 wepwsolem 30987 ssfiunibd 31509 mptrcl 32555 bnj98 33925 atbase 35014 llnbase 35233 lplnbase 35258 lvolbase 35302 osumcllem4N 35683 pexmidlem1N 35694 lhpbase 35722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 df-nul 3785 |
Copyright terms: Public domain | W3C validator |