Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nabbiOLD Unicode version

Theorem nabbiOLD 2791
 Description: Obsolete proof of nabbi 2790 as of 25-Nov-2019. (Contributed by AV, 7-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nabbiOLD

Proof of Theorem nabbiOLD
StepHypRef Expression
1 df-ne 2654 . . 3
2 abbi 2588 . . . . . 6
32bicomi 202 . . . . 5
43notbii 296 . . . 4
5 exnal 1648 . . . . . 6
65bicomi 202 . . . . 5
7 xor3 357 . . . . . 6
87exbii 1667 . . . . 5
96, 8bitri 249 . . . 4
104, 9bitri 249 . . 3
111, 10bitri 249 . 2
1211bicomi 202 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  <->wb 184  A.wal 1393  =wceq 1395  E.wex 1612  {cab 2442  =/=wne 2652 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-ne 2654
 Copyright terms: Public domain W3C validator