![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > naecoms | Unicode version |
Description: A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
naecoms.1 |
Ref | Expression |
---|---|
naecoms |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aecom 2051 | . 2 | |
2 | naecoms.1 | . 2 | |
3 | 1, 2 | sylnbir 307 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
A. wal 1393 |
This theorem is referenced by: sb9 2169 eujustALT 2285 nfcvf2 2645 axpowndlem2 8994 wl-sbcom2d 30011 wl-mo2dnae 30019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |