MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naecoms Unicode version

Theorem naecoms 2053
Description: A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.)
Hypothesis
Ref Expression
naecoms.1
Assertion
Ref Expression
naecoms

Proof of Theorem naecoms
StepHypRef Expression
1 aecom 2051 . 2
2 naecoms.1 . 2
31, 2sylnbir 307 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  A.wal 1393
This theorem is referenced by:  sb9  2169  eujustALT  2285  nfcvf2  2645  axpowndlem2  8994  wl-sbcom2d  30011  wl-mo2dnae  30019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator