![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nanbi | Unicode version |
Description: Show equivalence between the biconditional and the Nicod version. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 9-Mar-2020.) |
Ref | Expression |
---|---|
nanbi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 370 | . . 3 | |
2 | dfbi3 893 | . . 3 | |
3 | df-nan 1344 | . . . 4 | |
4 | nannot 1351 | . . . . . 6 | |
5 | nannot 1351 | . . . . . 6 | |
6 | 4, 5 | anbi12i 697 | . . . . 5 |
7 | 6 | bicomi 202 | . . . 4 |
8 | 3, 7 | imbi12i 326 | . . 3 |
9 | 1, 2, 8 | 3bitr4i 277 | . 2 |
10 | nannan 1348 | . 2 | |
11 | 9, 10 | bitr4i 252 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
-/\ wnan 1343 |
This theorem is referenced by: nic-dfim 1502 nic-dfneg 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-nan 1344 |
Copyright terms: Public domain | W3C validator |