MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanbi1 Unicode version

Theorem nanbi1 1354
Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.)
Assertion
Ref Expression
nanbi1

Proof of Theorem nanbi1
StepHypRef Expression
1 anbi1 706 . . 3
21notbid 294 . 2
3 df-nan 1344 . 2
4 df-nan 1344 . 2
52, 3, 43bitr4g 288 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  /\wa 369  -/\wnan 1343
This theorem is referenced by:  nanbi2  1355  nanbi12  1356  nanbi1i  1357  nanbi1d  1360  nabi1  29855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-nan 1344
  Copyright terms: Public domain W3C validator