![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nanbi1 | Unicode version |
Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) |
Ref | Expression |
---|---|
nanbi1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi1 706 | . . 3 | |
2 | 1 | notbid 294 | . 2 |
3 | df-nan 1344 | . 2 | |
4 | df-nan 1344 | . 2 | |
5 | 2, 3, 4 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 -/\ wnan 1343 |
This theorem is referenced by: nanbi2 1355 nanbi12 1356 nanbi1i 1357 nanbi1d 1360 nabi1 29855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-nan 1344 |
Copyright terms: Public domain | W3C validator |