MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nannanOLD Unicode version

Theorem nannanOLD 1349
Description: Obsolete proof of nannan 1348 as of 7-Mar-2020. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nannanOLD

Proof of Theorem nannanOLD
StepHypRef Expression
1 df-nan 1344 . . 3
2 df-nan 1344 . . . 4
32anbi2i 694 . . 3
41, 3xchbinx 310 . 2
5 iman 424 . 2
64, 5bitr4i 252 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  /\wa 369  -/\wnan 1343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-nan 1344
  Copyright terms: Public domain W3C validator