MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nannot Unicode version

Theorem nannot 1351
Description: Show equivalence between negation and the Nicod version. To derive nic-dfneg 1503, apply nanbi 1352. (Contributed by Jeff Hoffman, 19-Nov-2007.)
Assertion
Ref Expression
nannot

Proof of Theorem nannot
StepHypRef Expression
1 df-nan 1344 . . 3
2 anidm 644 . . 3
31, 2xchbinx 310 . 2
43bicomi 202 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  /\wa 369  -/\wnan 1343
This theorem is referenced by:  nanbi  1352  nanbiOLD  1353  trunantru  1437  falnanfal  1440  nic-dfneg  1503  andnand1  29864  imnand2  29865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-nan 1344
  Copyright terms: Public domain W3C validator