MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1abid Unicode version

Theorem necon1abid 2705
Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Aug-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon1abid.1
Assertion
Ref Expression
necon1abid

Proof of Theorem necon1abid
StepHypRef Expression
1 notnot 291 . 2
2 necon1abid.1 . . 3
32necon3bbid 2704 . 2
41, 3syl5rbb 258 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  =wceq 1395  =/=wne 2652
This theorem is referenced by:  lttri2  9688  xrlttri2  11377  ioon0  11584  lssne0  17597  xmetgt0  20861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-ne 2654
  Copyright terms: Public domain W3C validator