![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > necon1ad | Unicode version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1ad.1 |
Ref | Expression |
---|---|
necon1ad |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ad.1 | . . 3 | |
2 | 1 | necon3ad 2667 | . 2 |
3 | notnot2 112 | . 2 | |
4 | 2, 3 | syl6 33 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 =/= wne 2652 |
This theorem is referenced by: prnebg 4212 fr0 4863 sofld 5460 suppssOLD 6020 suppss2OLD 6530 onmindif2 6647 suppss 6949 suppss2 6953 uniinqs 7410 dfac5lem4 8528 uzwo 11173 seqf1olem1 12146 seqf1olem2 12147 hashnncl 12436 pceq0 14394 vdwmc2 14497 odcau 16624 islss 17581 fidomndrnglem 17955 mvrf1 18081 mpfrcl 18187 obs2ss 18760 obslbs 18761 dsmmacl 18772 regr1lem2 20241 iccpnfhmeo 21445 itg10a 22117 dvlip 22394 deg1ge 22499 elply2 22593 coeeulem 22621 dgrle 22640 coemullem 22647 basellem2 23355 perfectlem2 23505 lgsabs1 23609 lnon0 25713 atsseq 27266 disjif2 27442 suppss2f 27477 cvmseu 28721 itg2addnclem 30066 lsatcmp 34728 lsatcmp2 34729 ltrnnid 35860 trlatn0 35897 cdlemh 36543 dochlkr 37112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-ne 2654 |
Copyright terms: Public domain | W3C validator |