![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > necon1ai | Unicode version |
Description: Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1ai.1 |
Ref | Expression |
---|---|
necon1ai |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ai.1 | . . 3 | |
2 | 1 | necon3ai 2685 | . 2 |
3 | 2 | notnotrd 113 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 =/= wne 2652 |
This theorem is referenced by: necon1i 2699 opnz 4723 tz6.12i 5891 elfvdm 5897 fvfundmfvn0 5903 elfvmptrab1 5976 bropopvvv 6880 brovex 6969 brwitnlem 7176 cantnflem1 8129 cantnflem1OLD 8152 carddomi2 8372 cdainf 8593 rankcf 9176 1re 9616 eliooxr 11612 iccssioo2 11626 elfzoel1 11827 elfzoel2 11828 ismnd 15923 ismndOLD 15926 lactghmga 16429 pmtrmvd 16481 mpfrcl 18187 fsubbas 20368 filuni 20386 ptcmplem2 20553 itg1climres 22121 mbfi1fseqlem4 22125 dvferm1lem 22385 dvferm2lem 22387 dvferm 22389 dvivthlem1 22409 coeeq2 22639 coe1termlem 22655 isppw 23388 dchrelbasd 23514 lgsne0 23608 clwwlknprop 24772 2wlkonot3v 24875 2spthonot3v 24876 eldm3 29191 inisegn0 30989 afvnufveq 32232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-ne 2654 |
Copyright terms: Public domain | W3C validator |