MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bbii Unicode version

Theorem necon1bbii 2721
Description: Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon1bbii.1
Assertion
Ref Expression
necon1bbii

Proof of Theorem necon1bbii
StepHypRef Expression
1 nne 2658 . 2
2 necon1bbii.1 . 2
31, 2xchnxbi 308 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  =wceq 1395  =/=wne 2652
This theorem is referenced by:  necon2bbii  2724  rabeq0  3807  intnex  4609  class2set  4619  csbopab  4784  relimasn  5365  modom  7740  supval2  7935  fzo0  11849  vma1  23440  lgsquadlem3  23631  ordtconlem1  27906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-ne 2654
  Copyright terms: Public domain W3C validator