![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > necon1bbii | Unicode version |
Description: Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
Ref | Expression |
---|---|
necon1bbii.1 |
Ref | Expression |
---|---|
necon1bbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2658 | . 2 | |
2 | necon1bbii.1 | . 2 | |
3 | 1, 2 | xchnxbi 308 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
= wceq 1395 =/= wne 2652 |
This theorem is referenced by: necon2bbii 2724 rabeq0 3807 intnex 4609 class2set 4619 csbopab 4784 relimasn 5365 modom 7740 supval2 7935 fzo0 11849 vma1 23440 lgsquadlem3 23631 ordtconlem1 27906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-ne 2654 |
Copyright terms: Public domain | W3C validator |