![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > necon1d | Unicode version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon1d.1 |
Ref | Expression |
---|---|
necon1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1d.1 | . . 3 | |
2 | nne 2658 | . . 3 | |
3 | 1, 2 | syl6ibr 227 | . 2 |
4 | 3 | necon4ad 2677 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 =/= wne 2652 |
This theorem is referenced by: disji 4440 mul02lem2 9778 xblss2ps 20904 xblss2 20905 lgsne0 23608 h1datomi 26499 eigorthi 26756 disjif 27439 lineintmo 29807 2llnmat 35248 2lnat 35508 tendospcanN 36750 dihmeetlem13N 37046 dochkrshp 37113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-ne 2654 |
Copyright terms: Public domain | W3C validator |