MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1d Unicode version

Theorem necon1d 2682
Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon1d.1
Assertion
Ref Expression
necon1d

Proof of Theorem necon1d
StepHypRef Expression
1 necon1d.1 . . 3
2 nne 2658 . . 3
31, 2syl6ibr 227 . 2
43necon4ad 2677 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  =wceq 1395  =/=wne 2652
This theorem is referenced by:  disji  4440  mul02lem2  9778  xblss2ps  20904  xblss2  20905  lgsne0  23608  h1datomi  26499  eigorthi  26756  disjif  27439  lineintmo  29807  2llnmat  35248  2lnat  35508  tendospcanN  36750  dihmeetlem13N  37046  dochkrshp  37113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-ne 2654
  Copyright terms: Public domain W3C validator