MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2abii Unicode version

Theorem necon2abii 2723
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Mar-2007.)
Hypothesis
Ref Expression
necon2abii.1
Assertion
Ref Expression
necon2abii

Proof of Theorem necon2abii
StepHypRef Expression
1 necon2abii.1 . . . 4
21bicomi 202 . . 3
32necon1abii 2719 . 2
43bicomi 202 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  =wceq 1395  =/=wne 2652
This theorem is referenced by:  locfindis  20031  flimsncls  20487  tsmsgsum  20637  tsmsgsumOLD  20640  wilthlem2  23343  ismblfin  30055  elnev  31345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-ne 2654
  Copyright terms: Public domain W3C validator