![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > necon2ad | Unicode version |
Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon2ad.1 |
Ref | Expression |
---|---|
necon2ad |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot1 122 | . 2 | |
2 | necon2ad.1 | . . 3 | |
3 | 2 | necon3bd 2669 | . 2 |
4 | 1, 3 | syl5 32 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 =/= wne 2652 |
This theorem is referenced by: necon2d 2683 prneimg 4211 tz7.2 4868 nordeq 4902 omxpenlem 7638 pr2ne 8404 cflim2 8664 cfslb2n 8669 ltne 9702 sqrt2irr 13982 rpexp 14261 pcgcd1 14400 plttr 15600 odhash3 16596 lbspss 17728 nzrunit 17915 en2top 19487 fbfinnfr 20342 ufileu 20420 alexsubALTlem4 20550 lebnumlem1 21461 lebnumlem2 21462 lebnumlem3 21463 ivthlem2 21864 ivthlem3 21865 dvne0 22412 deg1nn0clb 22490 lgsmod 23596 axlowdimlem16 24260 normgt0 26044 nofulllem4 29465 lswn0 32343 islln2a 35241 islpln2a 35272 islvol2aN 35316 dalem1 35383 trlnidatb 35902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-ne 2654 |
Copyright terms: Public domain | W3C validator |