![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > necon2ai | Unicode version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon2ai.1 |
Ref | Expression |
---|---|
necon2ai |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ai.1 | . . 3 | |
2 | 1 | con2i 120 | . 2 |
3 | 2 | neqned 2660 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 =/= wne 2652 |
This theorem is referenced by: necon2i 2700 neneqadOLD 2766 intex 4608 iin0 4626 opelopabsb 4762 0ellim 4945 inf3lem3 8068 cardmin2 8400 pm54.43 8402 canthp1lem2 9052 renepnf 9662 renemnf 9663 lt0ne0d 10143 nnne0 10593 hashnemnf 12417 hashnn0n0nn 12458 geolim 13679 geolim2 13680 georeclim 13681 geoisumr 13687 geoisum1c 13689 ramtcl2 14529 lhop1 22415 logdmn0 23021 logcnlem3 23025 rusgranumwlkl1 24947 vcoprne 25472 strlem1 27169 subfacp1lem1 28623 rankeq1o 29828 fouriersw 32014 afvvfveq 32233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-ne 2654 |
Copyright terms: Public domain | W3C validator |