MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2i Unicode version

Theorem necon2i 2700
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.)
Hypothesis
Ref Expression
necon2i.1
Assertion
Ref Expression
necon2i

Proof of Theorem necon2i
StepHypRef Expression
1 necon2i.1 . . 3
21neneqd 2659 . 2
32necon2ai 2692 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  =/=wne 2652
This theorem is referenced by:  cmpfi  19908  mcubic  23178  cubic2  23179  2sqlem11  23650  ovoliunnfl  30056  voliunnfl  30058  volsupnfl  30059  mncn0  31088  aaitgo  31111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-ne 2654
  Copyright terms: Public domain W3C validator