![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > necon3abii | Unicode version |
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.) |
Ref | Expression |
---|---|
necon3abii.1 |
Ref | Expression |
---|---|
necon3abii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2654 | . 2 | |
2 | necon3abii.1 | . 2 | |
3 | 1, 2 | xchbinx 310 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
= wceq 1395 =/= wne 2652 |
This theorem is referenced by: necon3bbii 2718 necon3bii 2725 nesym 2729 n0f 3793 xpimasn 5457 rankxplim3 8320 rankxpsuc 8321 dflt2 11383 gcd0id 14161 axlowdimlem13 24257 filnetlem4 30199 pellex 30771 ldepspr 33074 dihatlat 37061 nev 37791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-ne 2654 |
Copyright terms: Public domain | W3C validator |