![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > necon3ad | Unicode version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon3ad.1 |
Ref | Expression |
---|---|
necon3ad |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3ad.1 | . 2 | |
2 | id 22 | . . 3 | |
3 | 2 | neneqd 2659 | . 2 |
4 | 1, 3 | nsyli 141 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 =/= wne 2652 |
This theorem is referenced by: necon1ad 2673 necon3d 2681 disjpss 3877 oeeulem 7269 enp1i 7775 canthp1lem2 9052 winalim2 9095 nlt1pi 9305 sqreulem 13192 rpnnen2lem11 13958 dvdseq 14033 eucalglt 14214 nprm 14231 pcprmpw2 14405 pcmpt 14411 expnprm 14421 prmlem0 14591 pltnle 15596 psgnunilem1 16518 pgpfi 16625 frgpnabllem1 16877 gsumval3a 16905 gsumval3aOLD 16906 ablfac1eulem 17123 pgpfaclem2 17133 lspdisjb 17772 lspdisj2 17773 obselocv 18759 0nnei 19613 t0dist 19826 t1sep 19871 ordthauslem 19884 hausflim 20482 bcthlem5 21767 bcth 21768 fta1g 22568 plyco0 22589 dgrnznn 22644 coeaddlem 22646 fta1 22704 vieta1lem2 22707 logcnlem3 23025 dvloglem 23029 dcubic 23177 mumullem2 23454 2sqlem8a 23646 dchrisum0flblem1 23693 colperpexlem2 24105 ocnel 26216 hatomistici 27281 sibfof 28282 outsideofrflx 29777 mblfinlem1 30051 cntotbnd 30292 heiborlem6 30312 2f1fvneq 32307 lshpnel 34708 lshpcmp 34713 lfl1 34795 lkrshp 34830 lkrpssN 34888 atnlt 35038 atnle 35042 atlatmstc 35044 intnatN 35131 atbtwn 35170 llnnlt 35247 lplnnlt 35289 2llnjaN 35290 lvolnltN 35342 2lplnja 35343 dalem-cly 35395 dalem44 35440 2llnma3r 35512 cdlemblem 35517 lhpm0atN 35753 lhp2atnle 35757 cdlemednpq 36024 cdleme22cN 36068 cdlemg18b 36405 cdlemg42 36455 dia2dimlem1 36791 dochkrshp 37113 hgmapval0 37622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-ne 2654 |
Copyright terms: Public domain | W3C validator |