![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > necon3bd | Unicode version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon3bd.1 |
Ref | Expression |
---|---|
necon3bd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2658 | . . 3 | |
2 | necon3bd.1 | . . 3 | |
3 | 1, 2 | syl5bi 217 | . 2 |
4 | 3 | con1d 124 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 =/= wne 2652 |
This theorem is referenced by: necon2ad 2670 nelne1 2786 nelne2 2787 nssne1 3559 nssne2 3560 disjne 3872 difsn 4164 nbrne1 4469 nbrne2 4470 peano5 6723 oeeui 7270 domdifsn 7620 ac6sfi 7784 inf3lem2 8067 cnfcom3lem 8168 cnfcom3lemOLD 8176 dfac9 8537 fin23lem21 8740 dedekindle 9766 zneo 10970 modirr 12057 sqrmo 13085 pc2dvds 14402 pcadd 14408 4sqlem11 14473 latnlej 15698 sylow2blem3 16642 irredn0 17352 irredn1 17355 lssneln0 17598 lspsnne2 17764 lspfixed 17774 lspindpi 17778 lsmcv 17787 lspsolv 17789 isnzr2 17911 coe1tmmul 18318 dfac14 20119 fbdmn0 20335 filufint 20421 flimfnfcls 20529 alexsubALTlem2 20548 evth 21459 cphsqrtcl2 21633 ovolicc2lem4 21931 lhop1lem 22414 lhop1 22415 lhop2 22416 lhop 22417 deg1add 22504 abelthlem2 22827 logcnlem2 23024 angpined 23161 asinneg 23217 lgsne0 23608 lgsqr 23621 lgsquadlem2 23630 lgsquadlem3 23631 axlowdimlem17 24261 dvrunz 25435 spansncvi 26570 dmgmaddn0 28565 broutsideof2 29772 dvasin 30103 dvacos 30104 nninfnub 30244 pellexlem1 30765 dfac21 31012 pm13.14 31316 uzlidlring 32735 lsatcvatlem 34774 lkrlsp2 34828 opnlen0 34913 2llnne2N 35132 lnnat 35151 llnn0 35240 lplnn0N 35271 lplnllnneN 35280 llncvrlpln2 35281 llncvrlpln 35282 lvoln0N 35315 lplncvrlvol2 35339 lplncvrlvol 35340 dalempnes 35375 dalemqnet 35376 dalemcea 35384 dalem3 35388 cdlema1N 35515 cdlemb 35518 paddasslem5 35548 llnexchb2lem 35592 osumcllem4N 35683 pexmidlem1N 35694 lhp2lt 35725 lhp2atne 35758 lhp2at0ne 35760 4atexlemunv 35790 4atexlemex2 35795 trlne 35910 trlval4 35913 cdlemc4 35919 cdleme11dN 35987 cdleme11h 35991 cdlemednuN 36025 cdleme20j 36044 cdleme20k 36045 cdleme21at 36054 cdleme35f 36180 cdlemg11b 36368 dia2dimlem1 36791 dihmeetlem3N 37032 dihmeetlem15N 37048 dochsnnz 37177 dochexmidlem1 37187 dochexmidlem7 37193 mapdindp3 37449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-ne 2654 |
Copyright terms: Public domain | W3C validator |