MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4bbid Unicode version

Theorem necon4bbid 2710
Description: Contrapositive law deduction for inequality. (Contributed by NM, 9-May-2012.)
Hypothesis
Ref Expression
necon4bbid.1
Assertion
Ref Expression
necon4bbid

Proof of Theorem necon4bbid
StepHypRef Expression
1 necon4bbid.1 . . . 4
21bicomd 201 . . 3
32necon4abid 2708 . 2
43bicomd 201 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  =wceq 1395  =/=wne 2652
This theorem is referenced by:  fzn  11731  lgsqr  23621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-ne 2654
  Copyright terms: Public domain W3C validator