![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > necon4bd | Unicode version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4bd.1 |
Ref | Expression |
---|---|
necon4bd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon4bd.1 | . . 3 | |
2 | 1 | necon2bd 2672 | . 2 |
3 | notnot2 112 | . 2 | |
4 | 2, 3 | syl6 33 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 =/= wne 2652 |
This theorem is referenced by: om00 7243 pw2f1olem 7641 xlt2add 11481 hashfun 12495 hashtpg 12523 fsumcl2lem 13553 fprodcl2lem 13757 gcdeq0 14159 phibndlem 14300 abvn0b 17951 cfinufil 20429 isxmet2d 20830 i1fres 22112 tdeglem4 22458 ply1domn 22524 pilem2 22847 isnsqf 23409 ppieq0 23450 chpeq0 23483 chteq0 23484 lcmeq0 31206 bcc0 31245 ltrnatlw 35908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-ne 2654 |
Copyright terms: Public domain | W3C validator |