MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4bid Unicode version

Theorem necon4bid 2716
Description: Contrapositive law deduction for inequality. (Contributed by NM, 29-Jun-2007.)
Hypothesis
Ref Expression
necon4bid.1
Assertion
Ref Expression
necon4bid

Proof of Theorem necon4bid
StepHypRef Expression
1 necon4bid.1 . . 3
21necon2bbid 2713 . 2
3 nne 2658 . 2
42, 3syl6rbb 262 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  =wceq 1395  =/=wne 2652
This theorem is referenced by:  nebi  2767  znnenlem  13945  rpexp  14261  norm-i  26046  trlid0b  35903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-ne 2654
  Copyright terms: Public domain W3C validator