![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > neeq12d | Unicode version |
Description: Deduction for inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neeq1d.1 | |
neeq12d.2 |
Ref | Expression |
---|---|
neeq12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . . 3 | |
2 | neeq12d.2 | . . 3 | |
3 | 1, 2 | eqeq12d 2479 | . 2 |
4 | 3 | necon3bid 2715 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 =/= wne 2652 |
This theorem is referenced by: 3netr3dOLD 2761 3netr4dOLD 2763 fnelnfp 6101 suppval 6920 infpssrlem4 8707 injresinjlem 11925 sgrp2nmndlem5 16047 pmtr3ncom 16500 isnzr 17907 ptcmplem2 20553 iscgra 24169 axlowdimlem6 24250 axlowdimlem14 24258 usgrcyclnl1 24640 constr3lem6 24649 4cycl4dv4e 24668 usg2wotspth 24884 2spontn0vne 24887 numclwwlk2lem1 25102 numclwlk2lem2f 25103 numclwlk2lem2f1o 25105 numclwwlk5 25112 signsvvfval 28535 signsvfn 28539 derangsn 28614 derangenlem 28615 subfacp1lem3 28626 subfacp1lem5 28628 subfacp1lem6 28629 subfacp1 28630 sltval2 29416 sltres 29424 nodenselem3 29443 nodenselem5 29445 nodenselem7 29447 nofulllem4 29465 nofulllem5 29466 fvtransport 29682 stoweidlem43 31825 nnsgrpnmnd 32506 2zrngnmlid 32755 pgrpgt2nabl 32959 ldepsnlinc 33109 bnj1534 33911 bnj1542 33915 bnj1280 34076 cdlemkid3N 36659 cdlemkid4 36660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-cleq 2449 df-ne 2654 |
Copyright terms: Public domain | W3C validator |