![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > neeq2 | Unicode version |
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) (Proof shortened by Wolf Lammen, 18-Nov-2019.) |
Ref | Expression |
---|---|
neeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 | |
2 | 1 | neeq2d 2735 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 =/= wne 2652 |
This theorem is referenced by: neeq2iOLD 2745 neeq2dOLD 2749 psseq2 3591 fprg 6080 f1dom3el3dif 6176 dfac5 8530 kmlem4 8554 kmlem14 8564 1re 9616 dvdsle 14031 sgrp2rid2ex 16045 isirred 17348 isnzr2 17911 dmatelnd 18998 mdetdiaglem 19100 mdetunilem1 19114 mdetunilem2 19115 maducoeval2 19142 hausnei 19829 regr1lem2 20241 xrhmeo 21446 axtg5seg 23862 axtgupdim2 23869 axtgeucl 23870 ishlg 23986 tglnpt2 24021 axlowdim1 24262 2pthoncl 24605 clwlknclwlkdifs 24960 3cyclfrgrarn1 25012 4cycl2vnunb 25017 numclwwlk2lem1 25102 numclwlk2lem2f 25103 superpos 27273 signswch 28518 dfrdg4 29600 fvray 29791 linedegen 29793 fvline 29794 linethru 29803 hilbert1.1 29804 refsum2cnlem1 31412 stoweidlem43 31825 usgvad2edg 32411 ax6e2ndeq 33332 ax6e2ndeqVD 33709 ax6e2ndeqALT 33731 hlsuprexch 35105 3dim1lem5 35190 llni2 35236 lplni2 35261 2llnjN 35291 lvoli2 35305 2lplnj 35344 islinei 35464 cdleme40n 36194 cdlemg33b 36433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-cleq 2449 df-ne 2654 |
Copyright terms: Public domain | W3C validator |